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Abstract
While large language models (LLM) have
demonstrated state-of-the-art performance in
many NLP tasks, it is often time and resource
consuming to train a large-scale model with
billions of tokens, creating barrier for academic
researchers and small companies to train their
own model. It is verified experimentally that
scaling up language models can introduce emer-
gent abilities, which do not exist in smaller
models. On the other hand, specialized prompt-
ing methods such as Chain-of-Thought are not
effective unless the model size exceeds a spe-
cific level (Wei et al., 2022a). Thus, we ap-
ply the Reasoning by Asking method (Shridhar
et al., 2023), focus on the specific task of multi-
step mathematical reasoning, and improve the
performance of smaller language models us-
ing a Mixture-of-Experts (MoE) technique. We
demonstrate that by fine-tuning a GPT2 or Di-
aloGPT model for each smaller problem space,
our method achieve a higher accuracy on the
GSM8K dataset than fine-tuning a single model.
We also compared and discussed the perfor-
mance between these base models in this re-
port.

1 Introduction

Despite the vast improvements brought by pre-
trained Large Language Models in many natural
language processing tasks including text transla-
tion and language modeling, its large number of
parameters and pre-train data do not lead to high
performances on challenging tasks, such as arith-
metic, commonsense, and symbolic reasoning (Rae
et al., 2021). Step-by-step reasoning approaches
like Chain-of-Thought (CoT) have proven to be
efficient when inducing the reasoning capabilities
in large language models (Wei et al., 2022b), how-
ever the performance of these approaches largely
depends on the model size.

Our goal is to use Mixture of Exports (MoE)
techniques on smaller-size language models to com-
pensate for the resources needed to train or call the
API of a larger language model in a multi-hop rea-
soning process.

In this project we focus on solving Math Word
Problems (MWP). To apply MoE, we first need to

divide the problem space into disjoint sub-spaces,
and train a model for each sub-space. For multi-
step problems, we train a model for problems with
specific number of steps to solve, which ranges
from 2 to 8 in GSM8K dataset. Number of steps
needed to solve a problem often correspond to
the complexity of a problem. In the two-stage
experiments we conducted, we have fine-tuned
a GPT2-small or DialoGPT-small (Zhang et al.,
2019) model for each subset of questions on the
step-by-step solution procedure provided by the
GSM8K dataset. We then compared their perfor-
mance at validation and inference time with the
baseline model, which is trained on all training
data. 1

2 Related work

Math Word Problems (MWP) The task of
Mathematical Word Problem Solvers (MWPs) is
to automatically answer math questions based on
a concise problem description. An example is pro-
vided in Table 1. Numerous researchers have con-
ducted investigations in this field, leading to the
introduction of various approaches, including rule-
based (Kintsch and Greeno, 1985) methods, statis-
tical machine learning (Kushman et al., 2014; Roy
and Roth, 2018) techniques, and Seq2Seq-based
approaches (Wang et al., 2018). Wang et al. at-
tempted to try decomposing the operations needed
to solve the problem into an expression tree. Xie
and Sun later explored a goal-driven approach
to decompose the problem into the sub-questions
and construct an expression tree using these sub-
questions.

With the advancements in large language models
(LLMs), several approaches have been proposed
and have demonstrated significant improvements.
One notable approach is the Chain-of-Thought
(CoT) approach (Wei et al., 2022b), which en-
hances the reasoning ability of LLMs by prompting

1Code and preprocessed data are available at
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them with a series of intermediate reasoning steps.
However, applying CoT prompting to smaller scale
models is not feasible (Wei et al., 2022b).

An alternative approach that shows potential is
knowledge distillation. It involves using the CoT
outputs of LLMs as training data for smaller mod-
els, aiming to transfer the reasoning ability to these
models. Unfortunately, this attempt has proven un-
successful due to the limited reasoning capability
of small models (Stolfo et al., 2022). Recently, the
Decompositional Distillation approach has been
proposed as an alternative (Shridhar et al., 2022).
Instead of training small models with CoT results
from LLMs, this approach decomposes the input
problem into a series of subquestion-solution pairs.
The small models trained using this approach have
shown superior performance compared to models
of the same size trained to reproduce CoT results,
achieving a 35% improvement on the GSM8K
dataset.

Mixture of Experts Mixture of Experts (MoE)
was first introduced long ago (Jacobs et al., 1991).
The essential idea is to construct a collection of
experts and each learns from a subset of the training
samples. Various types of expert architecures have
been proposed, such as SVM, Gaussian processes
and deep networks.

This method was introduced to solve learning
problems regarding natural languages (e.g. lan-
guage modeling and machine translation tasks)
(Shazeer et al., 2017). Due to the increase in the
size of dataset, larger and larger model capacity is
needed, which leads to explosion in training cost.
The goal of applying MoE is to decrease the total
number of updates on all parameters, since the pa-
rameters of each expert are only updated by the
corresponding subset of training samples.

Response Generation Recently many improve-
ments in different neural language tasks have been
made using large-scale models based on trans-
formers (Radford et al., 2018; Raffel et al., 2019).
Thanks to the self-attention mechanism in the
transformer-based models, they are capable of
capturing long-term dependencies in textual data
(Vaswani et al., 2017). These models, such as GPT-
2 (Radford et al., 2018) or BERT (Devlin et al.,
2018) are usually pre-trained on large-scale data to
learn to capture the relations between tokens and
sentences. GPT-2 has shown good performance in
generating fluent and diverse responses. However,

since most such models are pre-trained on gen-
eral text data, they sometimes generate undesirable
repetition and monotone answers. Other models,
such as DialoGPT (Zhang et al., 2019) and DLGnet
(Olabiyi and Mueller, 2019) are later proposed for
generating more relevant and context-consistent re-
sponses in dialog settings. The data used in their
pre-training processes are dialogs. For instance
in DialoGPT, bthe data used for pre-training is
chains of comments collected from Reddit. To
avoid repetition and bland responses, filtering of
the pre-train data by removing repetitive and un-
informative target responses is often included and
mutual informative maximization are used when
pre-training DialoGPT. The later achieves better re-
sults on DSTC-7 (Dialogue Generation Challenge)
when compared with GPT-2.

3 Dataset

The reasoning dataset we adopted is Socratic ver-
sion of GSM8K dataset (Cobbe et al., 2021). It
consists of 8.5K multi-step grade school math word
problems written by human writers, while the num-
ber of reasoning steps vary from 2 to 8. Getting the
ultimate solutions to the given problems involve
executing a series of elementary arithmetic opera-
tions (+−× ÷). These problems are designed to
be within the knowledge range of a proficient mid-
dle school student, thus they serve as an effective
measure for developing multi-step mathematical
reasoning abilities in language models.
The dataset is originally segmented into 7.5K train-
ing problems and 1K testing problems, which we
followed in our experiment settings. The approach
we used to split the data for each sub-model is: we
first calculated the number of reasoning steps for
each MWP record, then for each specific number
of steps, we took the MWP records with num steps
larger or equal than that and pruned them to the
number of steps we require.

After the preprocessing described above, size
of training set, validation set and test set for each
sub-model are listed in Table 2.

4 Experiments

We conducted two studies using different models
to compare the performances of MoE and single
model. Study 1 used GPT2-small model for each
number-of-step in the GSM8K dataset and Study
2 used DialoGPT as the base model. Due to the
divergent nature of the two models. We used dif-



Q: A robe takes 2 bolts of blue fiber and half that much white fiber. How many
bolts in total does it take?
A: The answer is 3

Table 1: Example of MWPs

Number of Steps Training Size Validation Size Testing Size
2 steps 7473 748 326
3 steps 5513 552 370
4 steps 3027 337 298
5 steps 1533 171 174
6 steps 750 84 88
7 steps 331 – 40
8 steps 103 – 20

Table 2: Size of training, validation and testing subsets with specific number of steps. Currently we did not train
model with 7 and 8 steps because the training subset is too small, and our model has too many parameters, causing
them to overfit easily.

ferent data preprocessing methods as introduced
below.

Note that we followed one of the settings in-
troduced in Shridhar et al., that is, all the sub-
questions are expected to be generated by a LLM-
based question-generation (QG) model but can also
be given as ground-truth as the best-case senario to
more effectively construct and evaluate a separate
question-answering (QA) model we want to focus
on. Hence in all our experiments, the sub-questions
are directly adapted from the Socratic version of
GSM8K dataset and given as input in both training
and evaluation.

4.1 Study 1 experiment setting

• Data preprocessing. To construct the input
data for fine-tuning language models, for each
math problem, we extracted the context C,
the main problem P and each sub-question
and answer pairs (qi, ai). Since we wanted
to use questions as the prompt to get all the
corresponding answers, we first concatenated
all the sub questions together with C and P ,
and put all the sub answers at the end of the
sequence.
Following the tradition of language modelling,
we added one ⟨BOS⟩ token to mark the be-
ginning of the sequence, and one ⟨EOS⟩ to-
ken at the end to indicate termination of the
generation process. In addition, to separate
question segments from the answer segments,

we inserted one ⟨SEP ⟩ token after the last
sub question. The intuition is to indicate the
model to start generating answers. One exam-
ple of the final constructed input is shown in
Figure 1.a.

• Train. For each problem complexity (num-
ber of reasoning steps ranges from 2 to 6),
we trained one expert model. Here we ex-
cluded 7 and 8 steps due to lack of data (each
with around 100 records). We also trained
one baseline model that uses all the training
data with various steps. All models were fine
tuned based on the small sized GPT2 using
the Huggingface library. To avoid overfitting,
all the models were trained for 50 epochs with
early stop. We also set batch size = 30 and lr
= 5e-4.

• Inference. During inference time, we first dis-
patched the inference job to the corresponding
expert model based on the number of sub ques-
tions. The prompt text we used is constructed
as ⟨BOS⟩+C+P + q1+ ...+ qn+ ⟨SEP ⟩.
The expert model was supposed to generate all
corresponding sub answers until the ⟨EOS⟩
token. Since small models are lacking in the
ability of arithmetic calculation, whenever an
equation is generated, we manually extracted
the expression and used python to get the so-
lution which is then concatenated with the
previously generated sequence.



Figure 1: Illustration of how a math problem is composed into input and output in study 1 & 2.

• Evaluation metrics. Since the last sub-
answer should contain the final solution of the
math problem, we calculated the accuracy of
the numeric solution generated at the last step
to measure the model’s ability of multi-step
math reasoning. The accuracy of Mixture of
Expert (MoE) is simply the overall accuracy
of all expert models.

4.2 Study 2 experiment setting

• Data preprocessing. In study 2, we focused
on switching the base model from GPT-2 to
DialoGPT. In order to do this, we needed to
change the input data to a dialogue format.
For each math problem, we concatenated the
data entry in the following order during train-
ing: context C, the main problem P , and each
sub-question and answer pairs (qi, ai). The
special tokens are the same from study 1. One
example of the final constructed input is given
in Figure 1.c.

• Train. The training procedure was the same
as study 1, we trained one expert model for
each problem complexity, except for all mod-
els were fine tuned based on DialoGPT model
(Zhang et al., 2020). The other hyperparame-
ters remained the same.

• Inference. Given the nature of dialog-like
data, we cannot infer in the same setting as
study 1; on the other hand, we proposed two

methods for evaluating the performance of the
model in two distinct settings.

The first is illustrated in Figure 1.d, It simply
predicts the last sub-answer, which is also
the answer of main problem, given all the
previous reasoning steps and corresponding
sub-question (⟨BOS⟩+C+P + q1+ a1...+
qn+⟨SEP ⟩). We expected such expert model
to perform better than the model from study 1
when handling the same set of math problems
since more information (all the previous sub-
answers) is given to the model.

The second method is an iterative approach,
illustrated in Figure 1.e. In the first pass, con-
text, main question, and the first sub-question
is concatenated as the input (⟨BOS⟩ + C +
P + q1) for the expert model which specifi-
cally handling problems with Nsteps = 1; the
LLM-generated sub-answer a1, with ⟨EOS⟩
replaced by ⟨SEP ⟩, and the next ground-truth
sub-question q2 are then appended to the pre-
vious input. Such new input ⟨BOS⟩ + C +
P + q1 + a1 + ⟨SEP ⟩ + q2 is fed into the
next expert model handling Nsteps = 2, and so
on until the last sub-answer aN is generated
corresponding to qN . This sub-answer is the
final answer for the whole math problem.

• Evaluation metrics. The evaluation metric
is same as study 1, while we only considered
the accuracy of the numerical solution at the
last step, which is also the main answer, and



Context: John visits his parents twice a month. It takes him 2 hours to drive there at a speed of 70 mph.
Main-Q: Considering the round trip, how many miles a month does he drive when visiting his parents?
Sub-QA1: How far away are his parents? His parents live 70∗2=<<70∗2=140>>140 miles away.
Sub-QA2: How many miles does he drive in total? So he drives 140∗2=<<140∗2=280>>280 miles
a round trip.
Sub-QA3: How many miles does he drive in total? 280∗2 = <<280∗2=560>>560 miles a month.
Answer: 560
LLM-generated: <|BOS|>John visits . . . . It takes . . . . Considering the round trip, how many miles
a month does he drive when visiting his parents?<|SEP|> How far away are his parents? He drives
2∗70=<<2∗70=140>>140 miles away.<|SEP|> How many miles does he drive in total? So he drives
140+140=<<140+140=280>>280 miles in total.<|SEP|> How many miles does he drive in total?
He drives 280+280=<<280+280=560>>560 miles in total.<|EOS|>

Table 3: Illustration of one preprocessed GSM8K problem with Nsteps = 3 and its corresponding DialoGPT-
generated answers by the iterative inference method described in Figure 1.e. The orange text is the ground-truth
sub-answers; the blue text represents the LLM-generated answers in three iterations. Some parts of the duplicated
context are omitted for simplicity.

GPT2 DialoGPT
Nsteps Accfinal-a w/ GT sub-q Accsub-a w/ GT steps Accfinal-a iterative

2 11.90 7.67 5.52
3 5.68 7.57 1.89
4 2.01 11.07 1.68
5 0.58 2.30 0.00
6 0.00 0.00 0.00

MoE 5.33 6.82 2.27
Baseline w/o MoE 5.05 (Shridhar et al., 2023) 1.67 -

Table 4: Accuracy (in %) of GPT2-based and DialoGPT-based expert models, MoE, or baseline models evaluated
on GSM8K test set. Accfinal-a w/ GT sub-q represents the accuracy of the final answer by the similar inference process
as Figure 1.b; Accsub-a w/ GT steps is the accuracy of the last sub-answer, which is also the final answer in most
cases, given all the previous ground-truth steps (sub-q&a pairs) and its corresponding sub-question (Figure 1.d);
Accfinal-a iterative is the final accuracy obtained by iterative inference (Figure 1.e). Accuracy of MoE is the weighted
average of all expert models on the test set. Each number Nsteps indicates inferencing on problems with this number
of reasoning steps, corresponding to a specific expert model in the first two types of evaluation.

evaluated the accuracy of our MoE method as
the p-weighted average of all expert models,
where p represents the proportion of problems
with the Nsteps corresponding to that expert in
the test set.

4.3 Results

Accuracy of each expert models, the Mixture of
Experts and the baseline model are listed in Table
4. Note that the accuracy obtained by GPT2 and
DialoGPT are not comparable, as distinct ground-
truth information was exposed to the trained expert
models during the inference as illustrated in Fig-
ure 1 (all sub-questions vs. previous reasoning
steps). One key observation of this table is that

the accuracy generally dropped for expert models
handling more complicated problems, that is, re-
quiring more reasoning steps; however, we can not
conclude such behavior is due to the complexity of
problem itself or the limited training data given the
unbalanced distribution of GSM8K illustrated in
Table 2.

We did observe improved accuracy by Mixture
of Experts compared to a single model. Our GPT2-
based MoE outperforms the accuracy reported in
(Shridhar et al., 2023), where the GPT2-small
model is also trained on ground-truth step-by-step
annotations and inference as we did. Similarly, the
DialoGPT-based MoE significant outperforms the
single model we trained on all math problems from



the training set and inference in a single go.
Finally, we experimented in a more realistic set-

ting with the iterative evaluation. The accuracy
drops more dramatically when inferencing on prob-
lems with more reasoning steps, as more expert
models are involved while iterating through rea-
soning steps; for example, evaluating a problem
with Nsteps = 3 requires samples from three dis-
tinct expert models step by step, hence the incorrect
reasoning from previous LLMs can significantly
damaged the later generated text. One correct ex-
ample obtained by such evaluation is illustrated in
Table 3.2

5 Future work

5.1 Limitation

Due to the limited size of GSM8K dataset and
relatively high complexity of GPT-2 model (8.5k
MWPs vs. 124M parameters), fine-tuning such
models suffers from overfitting even in its baseline
setting, whereas our Mixture-of-Experts approach
suffers to a greater degree from this. When training
the expert model targeting the problems with 6
steps (750 records), we will have overfitting in few
epochs. Besides, the performance of fine-tuned
models can differ randomly on the test set.

Another limitation is that using accuracy as the
only evaluation metric for inference-time evalu-
ation is a limited representation of model’s rea-
soning skills. Due to the nature of math prob-
lems, a calculator is used for inference-time pre-
diction to transform the generated string within the
<<>> bracket into a number for exact compari-
son. Though accuracy is the most straightforward
and interpretable evaluation metric for MWPs, we
are looking for other metrics or data sources that
can more effectively represent model’s reasoning
capabilities.

5.2 Possible Improvements

To address some of the above-mentioned issues, the
most preliminary approach is to adapt more MWP
datasets, which may not have multi-step mathemati-
cal reasoning but has more variations over structure,
to increase model’s ability to generalize, for exam-
ple the SVAMP dataset (Patel et al., 2021). More-
over, we are able to augment our dataset through

2The interactive inference pipeline is available at
https://colab.research.google.com/drive/
1rOKXyNm_6mMfeMOV6nPeugQ0Bwj8Tsjk?usp=
sharing

three types of variations for creating SVAMP, e.g.
changing the principal object, inverting operations,
changing order of objects, or adding irrelevant in-
formation. With the augmented dataset, we expect
our models to obtain stronger mathematical reason-
ing abilities.

While we are still searching for other datasets,
preferably the mathematical problems which can be
manually decomposed into step-by-step procedures
and transformed into the so-called Socratic CoT, i.e.
a sequence of subproblem-solution pairs, we are
attempting to incorporate other non-mathematical
datasets with only original problem and learn a
semantic decomposition of the original problem,
for example the StrategyQA dataset, which con-
sists a factual question with binary True/False as
the final answer. To do so we aim to reconstruct
the whole framework, including the problem de-
composer, proposed in (Shridhar et al., 2022), and
therefore we can see how adapting Mixture of Ex-
perts (MoE) techniques could improve the whole
knowledge distillation pipeline.

What’s more, an acute drop in prediction accu-
racy of more complex problems is observed for
both GPT2 and DialoGPT due to extremely un-
balanced data distribution. To tackle this problem,
we could try to transfer the capability of experts
targeting at less complex problems to experts for
more complex problems in an iterative way. For
instance, we could train the 3-step-expert using the
2-step-expert as the pretrained backbone, and fine-
tune it with all 3-step data. And similarly, we train
all the experts iteratively leveraging the less step
expert model as the starting points. In this way, the
experts targeting at solving longer step reasoning
could utilize all data with fewer steps.
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